
Resolution obtainable with the gel 
permeation chromatography method applied 
to polymers and proteins 

A. A. Gorbunov 
All-Union Research Institute for Highly Pure Biopreparations, 197110 Leningrad, USSR 

and A. M.  Skvortsov 
Chemical-Pharmaceutical Institute, 197022 Leningrad, USSR 
(Received 30 August 1990; accepted 12 October 1990) 

The resolution obtainable with the gel permeation chromatography (g.p.c.) method in separating 
macromolecules and globular proteins has been analysed. A relationship has been established between the 
optimum sizes of separated macromolecules and the width of the chromatographic packing. It has been 
shown that for all monoporous sorbents the polymer molecular weight logarithm separation range is the 
same and amounts to ~ 1.5 decade. For proteins the g.p.c, resolution is 1.5 to 1.8 times poorer than that 
for flexible chain polymers, and their separation range is broader by the same factor. 
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INTRODUCTION 

Evaluation of the resolution obtainable with the gel 
permeation chromatography (g.p.c.) method is required 
in practically all principal applications of this method. 
Thus, in fractionation, it would be necessary to compare 
the degree of separation of the components of a polymer 
or protein mixture. High resolution is also essential for 
analysing the molecular weight distribution (MWD) and 
determining the polydispersity of polymers. 

The resolution provided by the g.p.c, method in 
polymer applications has been discussed in numerous 
studies ~ s. However, most of these studies are based on 
simplified semi-empirical concepts, specifically on the 
concept assuming calibration linearity in g.p.c. 

The object of this work is to examine the resolution 
problem from the standpoint of a rigorous theory of 
polymer g.p.c. Attention will mainly be focused on 
establishing the general principles of resolution, valid for 
various polymers and packing materials, so that we 
should be able to formulate the conditions for optimizing 
the separation and analysis of macromolecules and 
proteins. 

SEPARATION COEFFICIENT 

The key concept for the determination of resolution in 
chromatography is the peak separation coefficient~ -4: 

R =  V2--VI 
2(0"1 + 0"2i (1) 

where V I and V 2 are retention volumes corresponding 
to the elution of two individual polymeric components 
of molecular weights M~ and M2 while 0"~ and 0"2 are the 
standard widths of the respective chromatograms. 
Retention volume V~ is normally measured from the 
position of the maximum of the chromatographic peak 

or, where the chromatogram is asymmetrical, from its 
first moment. The second (central) moment (peak 
dispersion) is equal to a 2. 

Equation (1) is also used in chromatography for 
estimating the peak separations of polydisperse samples. 
In this case, the dispersion of each peak comprises two 
components, one associated with the polydispersity of 
the sample, the other independent of the polydispersity 
and known as instrumental broadening. Subsequently, 
while examining the resolution, we shall discuss the 
separation of monodisperse components in the assump- 
tion that at and 0" 2 in equation (1) are dependent on 
instrumental broadening only. It is normally assumed 
that for adjacent peaks 0"~ ~ 0"2 -~ #. 

Peak separation patterns corresponding to different 
separation coefficient R values can be found in reference 
1. Separation is generally considered to be good at R/> 1. 

Peak-to-peak distance AV= V2-V1 obviously de- 
pends upon the difference between the molecular weights 
of the separated components. Therefore the separation 
coefficient as such is not sufficient to characterize the 
resolution obtainable with the g.p.c, method. For a more 
adequate determination of resolution, reference 1 
suggests standardization of the difference between the 
molecular weights of the components and introduces the 
concept of a normalized separation coefficient: 

R 
R~ = (2) 

A log M 

Numerically, R is equal to the separation coefficient for 
two components with a decade difference in molecular 
weight. From equations (1) and (2) it follows that: 

1 AV 
R~ = (3) 

46 A log M 

Figure ! illustrates schematically how the MWD values 
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Figure 1 Schematic view of a chromatogram corresponding to two 
closely similar polymer homologues (A). a calibration relationship (B), 
and the MWD of polymer homologues of molecular weights M 1 and 
M 2 (C). Marked on the calibration curve (B) is the log M,.i. to log M,... 
working range 

for samples (Figure IC) are obtained from a chromato- 
gram (Figure 1A) using a calibration relationship 
(Figure IB). 

The use of normalized separation coefficient R s to 
characterize the resolution assumes the linearity of the 
calibration curve in the log M versus V coordinates 
(Figure I). The parameter A V/A log M is then constant 
and equal to the reciprocal slope of this curve. At the 
same time, it is well known that the calibration 
relationship may be considered approximately linear, 
within a limited MW range. Strictly speaking, the 
calibration slope varies continuously; the difference in 
slope in the centre and at the ends of the calibration 
curve is quite substantial t-5. For the purposes of 
resolution analysis, we shall therefore introduce a 
differential normalized separation coefficient: 

1 dV 
/~ = (4) 

46 d log M 

OPTIMUM SEPARATION 

Let us pass over from retention volume V to distribution 
coefficient K = (V-Vo) /Vp  where Vo and Vp are the 
mobile and stationary phase volumes. Then: 

R~= Vp dK (5) 
• 4# ~1 l o g M  

The first cofactor Vp/46 in equation (5) is called the peak 
capacity 4"s and is numerically equal to the maximum 
number of individual components (polymer homologues) 
separated within Vo to V o + Vp, with the separation 
coefficient Rs= 1. The peak capacity increases with 
increasing packing, pore volume and with decreasing 
instrumental broadening 6. Instrumental broadening in 
g.p.c, depends on a number of factors, the main ones 

being non-uniform chromatographic column packing, 
particle size of packing, eluent flow rate, geometrical 
column dimensions and spreading of the sample in the 
extra-column lines 5. These are all known factors, and 
their influence is usually accounted for. 

The instrumental broadening value can be estimated 
experimentally from the width of polymer standard 
chromatograms. This procedure is not quite precise, 
however, because there is still some polydispersity 
inherent in polymer standards and fractions. One other 
method of determining instrumental broadening experi- 
mentally, which does not require strictly monodisperse 
samples, is that used by Tung 6. 

Thus, the first term in equation (5) is non-universal, 
being dependent on the design of a specific chromato- 
graphic system (column geometry and operating 
parameters). However, it can be measured and, in a 
measure, is amenable to optimization 5. The dependence 
of this term upon distribution coefficient, pore width, etc. 
has been frequently discussed in the literature yet no 
satisfactory explanation has been found so far. 

The object of this work will be to consider the second 
cofactor introduced in references 7 and 8, as well as its 
dependence on the parameters K, d and R and on the 
solvent quality. Thus the discussion will not be on the 
resolution capability as a whole, but rather on the 
selectivity of the g.p.c, method. 

Using the universal dependence of distribution 
coefficient K on the macromolecule-to-pore size ratio R/d 
obtained by Casassa 9 for the theory ofg.p.c., it was found 
possible to ascertain that the ~O parameter (~ = dK/d In M), 
i.e. the calibration curve slope, is dependent on the 
distribution coefficient only and is given by an equationT'S: 

{~  - i)/Z82K) a tK  >0.5 
~O(K) ~ In at K < 0.5 (6) 

7~ 

Experimental verification of equation (6) has 
shown 8'~°'~ ~ that this relationship holds good for various 
polymers and various types of chromatographic packing. 

Figure 2a shows experimental data ~2 on calibration 
relationships for dextrans on porous glasses with different 
pore diameters. The same data are given in Figure 2b in 
the universal coordinates of ~ versus K. It can be seen 
that for all five packings the points fit the same curve 
which coincides with the theoretical relationship in 
equation (6). Figure 2 also presents data from references 
10 and 11 for polystyrene on modified porous silica SW 
3000 with a pore diameter of ,,- 15 nm. 

The qJ versus K relationship in Figure 2b testifies once 
again against the concept of calibration curve slopes 
being invariably constant and indicates that there exists 
a maximum value of ~0m, x corresponding to optimum 
separation conditions in g.p.c. According to the theory 
advanced in reference 7, O,,,x ~ 0.3 at K ~ 0.3. Under 
these conditions the reduced separation coefficient 
reaches the maximum value: 

(/~.~)~,.. ~ 0.69 Vp (7) 
46 

Let 2d denote the packing pore diameter, and /~ the 
mean radius ofgyration of the separated macromolecules. 
As previously mentioned, according to the g.p.c, theory 
in reference 9, the distribution coefficient K is a universal 
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a macromolecular applications are realized at: 

2 
/~opt ~ d (9) 

Equation (9) serves to establish the opt imum ratio 
between the mean size of the separated macromolecules 
and the packing pore size. 

To generalize equation (9) for the arbitrary pore shape 
case, we introduce, in keeping with reference 9, a specific 
pore surface area Z equal to the ratio of the total area, 
Sp, of all pores to their total volume V r. For pores of 
regular shape, Y: = ~/d where ~ = 1 for the slit-like pore 
shape, = = 2 for the cylindrical pore shape, and ~ = 3 for 
the spherical pore shape. We shall have then: 

2 
hopt ~ ~'- 1 ~ 0.64 (10) 

S t , 

b 

0 0 x 0 

4 .=v(dl°gM  ( 
o.z ~ " \  dVR Jr.,, = d log M/m, , 

Since Om,x~ ).3 at ar r ,  he accc 
• \u.~×o >b× (I1) the wo king rat ;ei'v dl is t 

O.I]--T 0 0 ~ monoporous  packing and is equal 
~ : P o x  x decades. 

x 

In addition to the opt imum size of macromolecules, 
one other important factor is the width of the working 
molecular weight (or size) range, wherein adequate 
separation is possible based on the use of a given 
chromatographic  packing. To determine the working 
range, the middle portion of the calibration curve is 
approximated by a linear relationship which is extended 
until it intersects vertical straight lines V R = V 0 and 
V R = V o + V w As a result, log "/~max and log Mm~. values 
are obtained, and the working range width is expressed 

q~ I as the number of decades: n = log(Mm,./Mmin), it is easy 
to see that the working range width n = log M r " , , -  

0.3 log Mini . is linked to the maximum value ~r",.. In fact, 

= (2.3@m.,)- 1 

( l l )  

Since ~bm, x ~ 0.3 at any d, then according to equation 
(I1) the working range width is the same for any 

to n ~ I . 4 6 M W  

0 0.2 0.4 o6 0.8 1.0 K 

0.3 
Figure 2 (a) Calibration relationships for g.p.c, of narrow MWD 
dextrans on porous glasses with pore diameters 2d equal to: O,  8.4 nm: 
[] ,  15.9 nm; o, 22.7 nm; A. 31.4 nm; + ,  51.7 nm (according to reference 
12l; O,  calibration relationships for g.p.c, of polystyrene standards on 
porous silica SW 3000 with 2d >- 15 nm (according to references 10 and 
11 ). (b) The same data in the universal coordinates of ~ = d K / d  In M 
t'er.~u.s K.  Solid line shows theoretical relationship (6) for slit-like pores 

function of the R/d ratio. This permits equation (6) to 
be transformed as follows: 

t 
Tz- l'2R,/d at/~ < 0.45d 

[(2;) O(R/d) ~ 2(R/d) 2 exp - a t / ~ >  0.45d (8) 

The @ versus R/d relationship is shown in Figure 3 (curve 
A). From equation (8) and Figure 3 it follows that the 
maximum of ~b and, consequently, the maximum of 
resolution obtainable with the g.p.c, method in 

0.2 

0.I 

0 R/d 

A 

0.5 I.O I.,5 

Figure 3 Calibration curve slope ~b versus the macromolecule-to-pore 
size ratio for Gaussian coils (curve A) and for proteins (curve B) 
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Figure 4 Relationship of ¢ v e r s u s  K for flexible-chain polymers in a 
good solvent with v = 0.6 (curve A) and in a poor solvent with v = 1/3 
(curve B). Dotted line shows calculation from equation (17) for spherical 
particles (proteins) in cylindrical pores (ct = 2) 

SEPARATION OF NON-GAUSSIAN 
MACROMOLECULES AND PROTEINS 

Strictly speaking, the above analysis of the resolution 
obtainable with the g.p.c, method is valid only for ideal 
(0) solvents, in which /~~ M ", and v=v0=0 .5 .  In 
practice, use is more frequently made of good solvents 
with 0 .6> v>0.5.  At the present time, there is no 
rigorous g.p.c, theory for macromolecules in a good 
solvent (with volume effects), but it has been shown 
experimentally that the universal Benoit calibration ~3, 
i.e. the universal K versus R relationship, holds for both 
good and 0 solvents. It may therefore be supposed that 
the general concepts regarding the g.p.c, resolution for 
macromolecules will remain valid if the solvent quality 
is accounted for by means of parameter v. Then: 

dK _ v 68 = v 
6 - d l ~ M  v o 0~6° (12) 

0.5 
n.~. . . . .  n o 

v 

According to equations (12), in good solvents with 
v = 0.6, the resolution obtainable with the g.p.c, method 
is 20% higher than in a 0 solvent, while the working 
range is narrower. 

Equations (12) also allow one to estimate the 
resolution obtainable with the g.p.c, method for 
macromolecules in a precipitating agent at vg~ = 1/3, i.e. 
practically globular proteins. 

There is also another way to obtain the 6 versus K 
relationship for proteins. It is known 14A5 that the 
distribution coefficient K~r for spherical molecules of 
radius R is equal to: 

where ~ = 1,2, 3 for slit-like, cylindrical, or spherical 
pores, respectively. By modelling protein molecules as 
solid spheres with R . , .  M 1/3, we obtain from equation 
(13): 

dKpr - ~ ( 1  -K1 /~ )K  ~=-1~/~ (14) 
6pr(K) = d In M - 

It follows from the analysis of equation (14) that the 
maximum of 6~AK)is attained at Ko= = [(~ - 1)/~]" and 
is equal to (6p,)m=x = [(~--1)/a] t=- 11/3. Figure 4 shows a 
6 versus K relationship calculated for the cylindrical pore 
shape and for macromolecules in a good solvent at v = 0.6 
(curve A) and in a poor solvent at v = 1/3 (solid line 
curve B). The dotted line shows a 6pr(K) relationship 
calculated from equation (14) for the cylindrical pore 
model (at ~ = 2). Comparison of dotted and solid lines 
B shows that the 6 versus K relationship for globules 
and the 6~  versus K relationship for globular proteins 
are practically identical. Comparison of curves A and B, 
Figure 4, shows that the separation behaviour of globules 
and globular proteins in g.p.c, is poorer than that of 
flexible chain polymers. At the same time the working 
MW logarithm separation range for proteins is wider 
than for polymers and, according to equation (12), 
constitutes over two decades. 

Equation (14) also enables determination of the 
optimum ratio between the size of the protein molecule 
(its radius R) and the packing pore width. For cylindrical 
pores: 

Ropt = 0.5d 

The 6 versus R/d relationship for proteins is given in 
Figure 3 (curve B). The protein separation principles in 
g.p.c, as described above are in qualitative agreement 
with the experimental observations. 

It would be interesting to compare experimentally the 
calibration curve for a series of globular proteins with a 
similar curve for the same proteins in a denatured coil-like 
state. After differentiating these relationships numeric- 
ally, they could be compared with curves A and B in 
Fioure 4. 

References 16 and 17 cite the molecular weights and 
Stokes radii r~(A) of many globular proteins. Processing 
these data has shown~ 7 that: 

rs ~ 0.49M °'378 (! 5) 

Frigon et al. 16 carefully measured the distribution 
coefficients K of these proteins and advanced an empirical 
relationship between K and rs: 

r~= 85 .7 -  144.4K + l l l . 9 K 2 - 4 7 . 6 K  3 (16) 

By regarding equations (I 5) and (16) as an experimental 
calibration curve for globular proteins, it is easy to obtain 
the following relationship for the slope of this curve: 

0 38( 85 .7 -  144.4K + 111.9K2 - 47.6K3"~ 
6 ( K ) =  . \ i-44~ _-- ~-2~_ ~/~. + ~-2~ k- ~ / (17) 

This relationship is shown in Figure 5 (curve B). 
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Figure 5 Relationships of 0 t, e r s u s  K for dextrans (curve A) and for 
globular proteins (curve B), plotted in accordance with empirical 
eq ua!ions (16) and (18) describing the experimental data of reference 16 

For denatured proteins, no such relationships exist. 
Use can be made, however, of experimental data obtained 
from g.p.c, of narrow M W D  dextrans on modified porous 
silica SW 3000. According to reference 16, these data are 
well approximated by a third-degree polynomial: 

log M = 5.11 - 3.26K + 5.17K 2 - 4 . 6 9 K  3 

By differentiating this expression, a relationship can 
easily be obtained for coil-like dextrans: 

~(K) = I2 .3 (3 .26 -  10.34K + 14.07K2)] - ~ ( 1 8 )  

This relationship is likewise given in Figure 5 (curve A). 
Comparison of the experimental data for proteins and 

dextrans (Figure 5) with the theoretical relationships for 
globules and coils (Figure 4) bears witness to the 
agreement between theory and experiment. It follows 
from Figure 5 that optimum separation of coil-like 
macromolecules and globular proteins can be attained 

at distribution coefficient K =0 .3 .  Separation of 
polymeric coils in this case will be 1.5 times better than 
that of globular proteins. 

In conclusion, we shall touch upon the question of 
g.p.c, resolution for branched polymers obtained by 
polymerization of functionally active monomers. Valence 
bonds are formed in this case randomly, by any pair of 
monomers containing free radicals, and the resulting 
structures have the so-called lattice animal form TM. The 
mean radius of gyration of such macromolecules obeys 
the ratio /~ ~ M t;'* irrespective of the solvent quality ~'~. 
According to equations (12), the resolution obtainable 
with the g.p.c, method for such randomly branched 
chains is two times lower than for linear Gaussian 
macromolecules of the same molecular weight while the 
working range for them is twice as broad. It would be 
interesting to verify the theoretical predictions 
experimentally. 
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